Математические задачи в пакете MathCAD 12



         

Глава 3 Вейвлетпреобразование



4.5.3. Вейвлет-преобразование



В последнее время возрос интерес к другим интегральным преобразованиям, в частности, к вейвлет-преобразованию (или дискретному волновому преобразованию). Оно применяется, главным образом, для анализа нестационарных сигналов и для многих задач подобного рода оказывается более эффективным, чем преобразование Фурье. Основным отличием вейвлет-преобразования является разложение данных не по синусоидам (как для преобразования Фурье), а по другим функциям, называемым вейвлетобразующими. Вейвлетобразующие функции, в противоположность бесконечно осциллирующим синусоидам, локализованы в некоторой ограниченной области своего аргумента, а вдали от нее равны нулю или ничтожно малы. Пример такой функции, называемой "мексиканской шляпой", показан на Рисунок 4.15.

По своему математическому смыслу вейвлет-спектр имеет не один аргумент, а два. Помимо частоты, вторым аргументом ь является место локализации вейвлетобразующей функции. Поэтому ь имеет ту же размерность, что и х.









Содержание  Назад  Вперед